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Summary
* Aim to reduce systematic errors in heat storage at the neighborhood/ city scale.
« Stage 1 (complete) introduced a more accurate representation of conduction through roofs and walls.
« Stege 2 (underway) will introduce internal thermal processes component to simulate conditions inside buildings.
» Addition benefits will include ability to simulate internal air temperatures (health/comfort) and building heating/cooling requirements (energy efficiency).

Background

* Hong Kong (left) has a smaller observed urban
heat island than Preston, Melbourne (right) — why?

« Urban climate is affected by both local scale effects
(building geometry, materials, vegetation) and large-
scale circulation (sea-breeze, atmospheric stability).

* Building-averaged urban models capture important
local processes, but their simplicity allows coupling
to large scale circulation models for dynamic effects.

Stage 1: New Conduction Parameterisation
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Interface conduction (proposed)

Stage 2: Internal Thermal Processes

evaluation of internal module (ongoing)

compare response of simple module to fully featured and
established building energy model (EnergyPlus)
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Future Work

» Code remaining internal processes and evaluate performance with fully featured 3D building energy model.

* |ncorporate internal model into aTEB, and then couple aTEB to the atmospheric model WRF through LIS.
* Run coupled internal-urban-atmosphere simulations to assess energy use impacts in Sydney/ Melbourne.
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